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and R.F. Taylor (FDDS), acting as Project Engineers.

This report was completed in September 1968 and covers the
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carried out by Dr, Arturs Kalnins, Professor of Mechanics at Lehigh
University. Dr. A. B. Perlman, Assistant Professor of Mechanical
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and developed the method of solution and wrote the computer program
for the Nonsymmetric Eigenvalue Program.
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ABSTRACT

This project was undertaken to present workable methods of
analyses for thin, elastic shells of revolution, and to provide
computer programs for performing such analyses. By means of
these me , the following problems for a thin, elastic shell
of revolution can be solved: (1) stresses and deflections can
be determined when the shell is subjected to arbitrary mechanical
and/or thermal loads; (2) natural frequencies and mode shapes
can be found for free vibration when the shell is subjected to
or is free of prestress; (3) buckling loads, according to the
classical stability theory, can be found when the shell is sub-
jected to axisymmetric or sinusoidal nonsymmetric prestress.

The results of the static and free-vibration analyses have been
verified and campared to experiments on many occasions and should
be regarded as acceptable. The buckling load, however, may or
may not correspond to the actual collapse load of the shell,

Distribution of this document is unlimited.
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PART I. THEORY AND ANALYSIS OF THIN, ELASTIC SHELLS

INTRODUCTION

The formulation of the basic theory which governs the de-
formation of a thin, elastic shell dates back tc the end of
the nineteenth century. At that time, it represented a ritursl
outgrowth of the earlier developments of the three-dimensional,
linear theory of elasticity and a complete understanding of
the theories for the deflection of slender beams and thin
plates. Using exactly the same fundamental assumptions which
had been made for beams and plates, only the concept of a
curved surface, through differential geometry, had to de added
in order to produce a theory for the deflection of a thin shell.
The motivation for the derivation of a shell theory at that
time probably did not come from expected immediate applications,
although the aim of the infitial papers cn this topic was said
to be directed at the development of a mathematical theory for

the analysis of vibration of bells.

The greatest difficulty in the application of shell theory
to actual analysis was found in the fact that the governing
equations were so compificated that either further simplifying
essumptions had to be made or only a few very simple shell
shapes could be analyzed. While the simplifying assumptions,
such as the assumotior of purely extensional (membrane) or

tnextensionz) states, did extend somewhat the cliass of shells

which could be analyzed, their use introduced fraccuractes




which sometimes could but at other times could not be recog-

nized.

The advent of a high-speed digital computer, as in many
other areas, has opened up great possibilities in shell anal-
ysis. One class of shells whose static, stability, and free-
vibration analyses can now be regarded as feasible comprises
all thin shells which are rotationally symmetric about one
axis. The symmetry must include the geometry as well as the
physical properties of the shell, so that no distinction can
be made between any two points of the shell which are equi-
distant from the axis of symmetry. A1l shell properties,
geometrical as well as physical, can vary arbitrarily along
the meridian of the shell, and the shell can be represented
by an arbitrary reference surface, as long as it is contin-
uous and rotationally symmetric. The shell wall can consist
of any number of layers which can be made of different ortho-

tropic materials.

It can be now safely said that at least the static and
free-vibration analyses of such shells of revolution have
reached a state of art where the stresses and deflections or
the natural frequencies and mode shapes can be determined in

8 routine manner.

The purpose of this report is to give to the designer
workable methods for the analysis of a class of shells which

fncludes all shells revolution. The methods are backed up by

2
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computer programs, also included in this report, by means of
which solutions can be obtained. While the results for the

static and free-vibration analyses for a properly described

shell should be acceptable without any reservation, the results 1
of the stability programs should be used with caution, because
no simple estimate is now available which could relate the
critical load, as predicted by the programs, with the actual
collapse load of tie shell. Further research in this direc;

tion is necessary.




II. GOVERNING EQUATIONS FOR SHELL ANALYSIS

1. Introduction

The analysis of thin, elastic shells of revolution con-

sidered in this report can be classified into two cases:

1. Stress analysis of a shell subjected to mechanical

ard thermal surface loads and edge loads.

2, Free vibration and stability analysis of a prestressed

shell.

The first case is reduced to a boundary value problem
governed by a system of nonhomogeneous, linear, partial dif-

ferential equations. The equations are separable with respect

to the meridional and circumferential coordinates of the shell.

The solution for each separable component of the loads is ob-
tained by solving a typical two-point boundary value problem
governed by eight first-order, linear, ordinary differential

equations. The method of solution is given in [1]*.

The second case leads to an eigenvalue problem which is
governed by a homogeneous system of linear, differential equa-
tions and homogeneous boundary conditions. The second case

can be further divided into two groups of problems:

*Numbers in brackets refer to References at the end of
this Part.




1. Free vibration and stability with axisymmetric pre-

stress (including zero prestress).

Ny

Free vibration and stability with nonsymmetric pre-

stress.

The partial differential equations for the eigenvalue
problem with axisymmetric prestress are again separable, and
the solution is obtained by solving a typical eigenvalue prob-
lem governed by a system of eight first-order, homogeneous,
linear, ordinary differential equations. The method of solu-

tion is given in [2].

In the case with nonsymmetric prestress, the partial dif-
ferential equations are not separable, and the problem cannot
be solved exactly. The solution is approximated by some se-
lected components of a Fourier series. By means of thc method
of weighted residuals, an approximate solution for the cases
with nonsyumetric prestress is obtained by solving an eigen-
value problem which is governed by 8xk first-order, homoge-
neous, linear, ordinary differential equations, where k is the
number of Fourier components used in the solution. Again, the

method of solution is that given in [2].

In order to arrive at a governing system of equations,
which is applicable for all the analyses considered in this re-
port, we shall first write down the governing equations for a

linear theory of shells when referred to a general orthogonal




coordinate system. Such a system of equations can be found in
a paper by Knowles and Reissner [3]. These equations will be
complemented by the inclusion of the inertia terms, ortho-
tropic layers, and an arbitrary reference surface as given in

the theory derived by Kalnins [4].

For the stress analysis problem of a shell, these linear
equations will constitute the governing system of equations.
For the free-vibration and stability analysis of a prestressed
shell, it will be regarded that the equilibrium equations are
those for the deformed shell element. Then the governing equa-
tions for the prestressed shell will be developed by assuming
that the solution consists of a prestressed state and an infin-
itesimal superimposed state. After subtracting out the equi-
librium equations for the prestressed shell and omitting all
square *terms in the variables of the superimposed state, a
linear, homogeneous system of equations for the free-vibration

and stability problem of a prestressed shell will be obtained.

2. Governing Equations For Orthogonal Coordinates

The theory of shells derived in [4] is based on three as-

sumptions:

1. Points on a normal of a reference surface before de-

formation remain on a straight line after deformation.

2. Distances between the points on a normal do rot change

during deformation.
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3. Stresses are replaced by stress resultants.

The analysis of shells considered in this report will be appli-
cable to a thin shell for which the following additional as-

sumptions will be made:

4, Points on a normal of the reference surface before de-

formation remain on the same normal after deformation.

5. The ratio of the thickness to the minimum radius of

curvature is negligible with respect to one.

Assumption #1 means that the displacement vector is assumed

in the form
Vg sEps63) = UlEysEp) + &5 B(Eq,E5) (2.7)

where £1> Ep denote the coordinates of an orthogonal coordinate
system lying on the reference surface, and £3 is the coordinate
along the normal of the reference surface. The origin of £3
is on the reference surface. The vectors u and g can be re-

solved into components defined by

{2.2)
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where I] and Lz are the unit tangent vectors of the £ys &

coordinate curves, and the unit normal of the reference surface
is defined by

a=1 1, (2.3)

Assumption #2, which will be made throughout this analysis,
requires that By = 0.

The governing equations of a shell theory which is based
on these five assumptions can be displayed in the following

way. The equations of equilibrium are given in vector form

by

(A M)+ (A M)+ Ay Ay R=0

(A, ¥y) ! (Ay M) , PR A (Ty <Ny + I < N) (2.4

+A A, M=0

where ﬂ]* 32’ and ﬂ]’ HZ’ denote the resultant stress vector
and stress couple on the edges £y = const. and Eg = const.,
respectively; A], A2 are the nonzero components of the metric

tensor of the (51,52) coordinate system; and

aad




(2.5)

(2.6)

: Commas designate differentiation with respect to the £y or &,

i coordinates, and dots denote derivatives with respect to time.

. If the ratio of the thickness to the minimum radius of ;

| curvature is negligible with respect to one (Assumption #5), 9
: then the parameters b], b2’ b3 are given in [4] by ;
m :
_ ioi ’
i bn = iZ] p Zn (2.7) ]

RIS

where n = 1,2,3, and

o

{ Z; = (z?+] - z?)/n (2.8)

In equation (2.7), m denotes the total number of layers, pi is

the mass density of the i-th layer, and £ = 23, Eq = Z4,q are




| the coordinates of the bounding surfaces of the i-th layer, as

; shown in Figure 1.

The surface loads applied to the two bounding surfaces of
the shell are represented by a surface load vector, Ps measured

! per unit area of the reference surface, and defined by

=R + 22 (2.9a)
where 1 and B2 denote the surface loads, measured per unit area
of the reference surface, which are applied on the bounding sur-

faces £3 = 24 and €3 = Zoiyo respectively. Similarly, the sur-

face moment vector is defined by

B2 L3 Rt 2 I3 < B2 (2.95)

Details of all these definitions can be found in [4].

The resultant stress vector and couple on an edge £y <

constant can be resolved into components defined by

| Ny = Nyp Dy v N T+ 0y I
1
M=-M I+ I

and on Ep = constant by

10
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No =N

2101 * Npp I+ Q, T
(2.10b)

No= - My I, + My T

The Gauss formulas found in [3] for the derivatives of the
unit vectors for an orthogonal coordinate system on a surface

are given by

D1, 7 - A2 To/Ay - Ay Ta/Ryy
2,0 B2 Ty/h - Ay Ta/Ry, (2.17a) i
T30 Ay Ly/Ryy + Ay To/Ry,

and

{ L2,2 = 7 Ra 0 T1/Ay - Ay T3/Ry,

Ti,2 = A1 Io/Ay - Ay I3/Ry, (2.11b)
I3,2% Ay To/Ryp + Ay T./Ry,

where the curvature components are defined by

L MRy =T30 " I
M/Ripg = T30 " T2
(2.12)
Ra/Ryy = 13,20 " 1)
Ry/Ryp = T3 2 " o

12
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Substituting the resultant stress and stress couple vectors,

as given by equations (2.10), into equation (2.1), and making

use of the Gauss formulas, leads to the following equations of

equilibrium:

(A Nyy)

(A Wyo)

(A ) ¢ (8} Q) N Ay (N /Ry ¢ Nya/Ry,

o

o)

*

s

<

L 4

thaM2 - AN

(A, N
1 21’.2

Ay Ap (Q)/Ry) + Qy/Ry, ¢ Py) = 0

(Ay W22) , * A N - M2 My

Ay Ay (Q)/Ryy ¢ Qp/Rpp ¢ Py) = 0

¢ Npy/Ryy + NgplRyy - Py) = 0

(Ay M3y) ; P haata s R M

Ay Ry (Q) - M) =0

(A M35) , P haa M M2 My

Ay Ay (Cp - M) =0

13

(2.13a)

(2.13d)

(2.13¢)

(2.134)

(2.13e)
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The positive directions of the resultants are shown in Figure

2. and P‘,n' denote the components of g and M, respectively.

The relations between the siress resultants and shell

strains, given in [4]), for a layered, orthotropic, thin shell,

can be written as

N

22

12

22

S IR PR P IR DRI P AR S PR’
n *Ca2 22t B2 Kyt Epp Ko
= Flyy ¢ vp) ¢ (8 ¢ ¢,)

B2 2 0y Kyt Dy Ky

€1y * Eap €20 ¢ Dyp kyy ¢ Dyy Ky,

Mi2 = My = Jlvy ¢ vp) ¢ K(sy ¢ 650

*

*

*

(2.14)

where, after using Assumption #5, the material parameters are

given by

asl
ab

abld

14

(2.15)
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Figure 2.

Stress-resultants on an Element.
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Similarly,
F =6y
J = Gy (2.17)
K= 653
where
6 7 el (2.18)
12n j=1 12 n )

For an orthotropic shell]
RIS VAR R T PRAPRY

12 7 V12 B/00 = vgp vp) = vy Ep/(0 - V12 v21)  (2.19)

22 = Ep/(1 - vyy vyy)

where E] and E

o are Young's moduli in the €1 and £n directions,




T T e

e o

respectively; 612 is the shear modulus in the tangent plane of
the (51,52) coordinate surface; Vio denotes the contraction
(Poisson's ratio) in the £ direction, caused by a positive

normal stress in the £y direction; and the superscript 1 refers

to the properties of the i-th layer.

The temperature terms in equations (2.14) are represented
by Hk’ where k = 1,2,3,4, and are based on the assumption of a
linear temperature field with respect to the €3 coordinate.

Thus, the temperature distribution within the shell is assumed
to be given by

T(eye065) = Tpleg,e,) + t3 Tyleqag,) (2.20)

Then, for a thin shell, the Hk terms have the form

Hy = Hyp Ty + Hy, Ty,
Ha = Hay Ty + Hyp Ty,
(2.21)
Hy = Hig Ty + Hyy T,
g = Hpp Ty + Hyy Ty,

where, for q = 1,2 and n 12,5,

17
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(2.22)

eyt vy
(2.23)

Ry = a3 + vy 0

where aq and @y denote the coefficients of thermal expansion

in the £ and £y directions, respectively.

If the linear distribution of the temperature throughout

the shell is assumed in the form of equation (2.20), then the

prescription of the temperature distribution on the two bound-

ing surfaces of the shell, given by £3 = 24 and £g = Zo41o

define uniquely TA and TM. Denoting the prescribed temperature

on £ = 2z, by TL and that on £g = Zoe by TU’ we have that

Ta = (L zp4y - Ty 29)/(24 - 29) '

Ty = (Ty - T\ Wz - 2)

The relations between the shell strains, appearing in




equations (2.14), and the displacement components, as defined

by equations (2.2), can be found from [3] and written as

e1y = Uy /Ayt Ay,

Yy = Uy g /Ay - Ay,

Kyy = 81,0/A + Ay 5

81 = B /Ay - Ay o

and

€2 = Up 2/Ay + A; 4

Yo = Uy /Ay - Ay 4
Kag = By 2/Ry + Ay

8o = 8y,2/Ry - Ay 4

On account of Assumption

By = Uy/Ryy *+ Up/Ryyp -

UZ/AI

uy /A,

Bo/A,

8y/A;

uy /A,
up/A,
81/A,

62/A1

Ry + u3z/Rys

Ry + uz/Ryy

+ u3/Ry,

N

#4, we have the relations

uz 1/A4

By = Up/Ryp *+ U/Ryq - U3 5/A,

19

(2.25a)

(2.25b)

(2.26)
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This completes the list of the governing equations for a
thin, elastic shell which are referred to an arbitrary reference
surface and an orthogonal coordinate system on this surface.
There are twenty-one equations, represented by equations (2.13),
(2.14), (2.25), and (2.26), and twenty-one unknowns. Together
with the boundary conditions, they constitute a properly posed

boundary value problem for the analysis of a thin elastic shell.

The appropriate boundary conditions, if Assumption #4 is

employed, on an edge £y = const. are the following:
1. Either N:] or u, prescribed,
2. Either N;z or u, prescribed,
3. Either Q; or u, prescribed,
4., Either M]] or 84 prescribed,

where the effective stress resultants are defined by
*
Nip = Nyy + Ma/Ryp
* + M
Njg = Nyg + Myp/Ry) (2.27)
*
QG =0+ Mypa/h
Similar boundary conditions are obtained on the edge £y =

const. by exchanging the indices 1 and 2.

20
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The governing equations presented here can be applied to
the linear, infinitesimal-deflection analysis of a thin shell,
for which the geometric shell parameters, given by A]. AZ’ I],
12, I3, R]], R]Z’ R21, R22, are taken as those of the reference
surface lying in the undeformed shell. However, for the free-
vibration and stability analysis of a prestressed shell, we
must at least consider the equilibrium of the deformed shell

element.

It should be noted that the equations of equilibrium, equa-
tions (2.13), are equally applicable to an undeformed as to a
deformed shell element, because a deformed shell is just
another shell. 1In order to apply equations (2.13) to a fi-
nitely deformed shell, we must simply regard that the geometric
shell parameters are the components of the metric, unit tangent
vectors, and curvatures corresponding to a convected coordinate
system of the deformed shell. Tkese geometric shell parameters
are, of course, not known until the problem is solved, but they
can be expressed in terms of the known geometric shell param-
eters of the undeformed reference surface and the components
of the displacement vector. Such expressions will be derived

in the following section.

We should also note at this time that since our equations
assume an orthogonal coordinate system on the reference sur-
face, we have already made the assumption that the (51.52)

convected coordinate system is orthogonal in the undeformed

21
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shell and remains orthogonal throughout deformation. However,
the coordinate system need not coincide with the lines of cur-
vature neither on the reference surface in the undeformed nor

in the deformed state.

3. Geometric Shell Parameters For A Deformed Shell

The object of this section is to derive the relations be-
tween the geometric shell parameters of two different deforma-
tion states (States I and II) of the shell, when the displace-
ment vector between these two states is given. States I and II
can be the undeformed and deformed states of the shell, or they

can be any other two states.

Let us denote the components of the metric and curvature
and the unit tangent vectors of the coordinate curves of State
I by a1s 355 95 Tyos Tays Toos t1r ko0 L3 and those of State
IT by Aps Ags Ryps Rygs Rpqs Ryps Tys Ips I3 The (g5,5,) co-
ordinate system, which describes the points of the reference
surface of the shell, will be assumed to be an orthogonal con-
vected coordinate system, so that a given material point of the
reference surface retains the same values of €4 and Eo for any
deformation state of the shell. However, the normal coordinate
of a point in State I will be denoted by g§ and the normal co-
ordinate of the same point in State II will be denoted by ggl.
Then the position vector of a specific material point of the

shell in State I is given by

22
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rEy,85:83) = s(g,6,) + sg ty (£4,6) (2.28a)
and in State II by

R(E1s60565) = S(Eq,8,) + egl I3 (gy,8)) (2.28b)

and the displacement vector is defined by

v=R-r (2.29)
For the purpose of deriving the equations for a stability
analysis of a shell, it will be convenient to set the normal
component of 8 equal to zero, which was one of the assumptions
introduced in the preceding section. However, since we can
resolve the displacement vector either along the tangent vec-
tors of State I or along those of State II, our choice of the
resolution will affect the direction of the normal component

of B.
~N

For example, if we use Assumption #1 in the form

veus+ gg 8 (2.30)
~ ~ ~n

and the resolution

23




Umup by ruy by tougts (2.31a)

AU PR (2.31b)

then a point, which was in State I at gg = ], will be at

11 L
€3 = (1 + 8% + 83) (2.32)

in State II. Similarly, if we use Assumption #1 in the form
11

Yy=ut+ea g (2.33)

and the resolution

:c

LI Bl S Al . (2.34a)
B Li*B I, (2.34b)
then a point, which was in State I at cg = 1, will be in State
Il at

ghl . (1 - B2 - 82)”2 (2.35)
3 1 2

This means that if either equation (2.31b) or (2.34b) is

employed, the distances between the points on a normal will

24
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change, and that Assumption #. s not compatible with setting
the normal component of [} eq' - to zero for a large rotation
of the normal. For our purps 2s, it will be appropriate to
make the assumption that the *‘ates I and 1] are such that the
squares of the components of 8 are negligidble with respect to
one. Then, according to equation (2.32) and (2.35), the normal
coordinate of a point in State | equals the normal coordinate
of the same point in State II, and the coordinate systems is

also convected in the €, direction.

With this assumption, we have that
¢y = a3l gy (2.36)

and the displacement vector is given by

Y*utegs (2.37)
where

LS (2.38)

8 = T3 - %, (2.38)

The nonzero components of the metric and the unit tangent vec-

tors of State | are given by

T ——




L

A

-
"

a7

5,272

3,274,

and those of State II by

26

(2.40)

(2.41)

(2.42)
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Using equations (2.38), the relations between the unit tangent

vectors in the two states are given by

Iy = (g + 4 4)/A
Lol = ‘agly ¥ U )R, i 33)
T3 =t3+8

The connection between the components of the metric in the
two states is found from equations (2.39) and (2.41), which,

with the use of equation (2.38a), can be written as

AM-at=luy+rsy) " uy*rsa) -5 8,
2k T4t e Y (2.44)
or
Ay = a0+ 2t g /ay +u g u /a2 (2.45)

Resolving u along the tangent vectors of State I, as given by

equation (2.31a), differentiating with respect to £ and using
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: | the Gauss formulas, leads to

80781 " enky * ke - Bk (G 29EN

where the shell strains are given by equations (2.25) and By
by equations (2.26). Substituting equation (2.46) into equa-
tion (2.45) we find that

Ap = ag(1 + 2eqy + e}y + v§ + 8) /2 (2.27)

Let us recall that we already have assumed that Bi is neg-

1igible with respect to one. Let us now assume further that
the States I and II are such that the squares of any of the
shell strains, defined by equations (2.25), are negligible with
respect to one. Then it follows from equation (2.47) that

A] = a](] + €]]) (2.48a)
and, by a similar procedure, that

Az L az(] + 522) (2-48b)

The connection between the components of curvature of the

| two states is found from the definitions given by equations
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(2.12). Using equations (2.43), we can write that

Af/Ryy = (B30 + 8,0) " (g + uy) (2.49)

+ ﬁ,] ‘ 2’] (2.50)

Resolving also B along the tangent vectors of State I

by equation (2.31b), we find that

» as given

72 =kt 61t -ty (2.51)

where the shell strains are given by equations (2.25) and

L, ottt e P

Substituting equation (2.46) and equation (2.51) into equation

(2.50) and using the definition of the components of curvature
for State I, we find that




2 =
(Af/a5) /Ry = Wy + kqy + v/ + e/

tkypegy syt B (2.53)

As before, we again omit any terms which have squares of shell

strains in comparison to those which have none, and get

(R§/a)/Ryy = Vrqgy + kg + yy/ryp + eqq/ryy (2.54)

or using equation (2.48a), we find that

Since the difference in the curvature components contains shell
strains of power one, and those having power two are negligible,

then equation (2.55) can finally be written as

Ry = vy + Ky + vq/ryp - eqy/ryy (2.56a)

Similarly, from equations (2.12) we get that

ARa/Ryp = (L3 1+ 8 ) " (agty, + 4 ))
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which, after omitting the squares in shell strains and using

equations (2.48), leads to

By exchanging the indices 1 and 2, we can obtain the remaining

relations of the curvature components in the form

1/R

1/rgp + kog + vp/rpy = €92/755 (2.564)

Equations (2.48) and (2.56) give the desired expressions
between the geometric shell parameters of States I and II when
the shell strains between these states, as defined by equations
(2.25) in terms of the components of the displacement vector,
are given. It should be recalled that in deriving these ex-
pressions, terms containing squares of shell strains have been

neglected in comparison with terms which contain none.
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4. Governing Equations of Equilibrium for Infinitesimal

Perturbations.

The stability and the free-vibration problem of a shell
with initial prestress are both concerned with a prestress

load system which produces in the shell a prestressed state.

The stresses and displacements of the prestressed state are
supposed to be previously calculated by some, linear or non-

linear, shell theory.

The stability problem asks whether or not there exists a
static perturbed state, infinitesimally close to the pre-
stressed state, which is still in equilibrium with the pre-
stress load system. The free-vibration problem requires the
existence of such a perturbed state in the presence of the
inertia terms. The object of this section is, therefore, the
derivation of the governing equations of equilibrium for the
case when infinitesimal perturbations are superimposed on the
prestressed state. Such perturbations must necessarily in-
volve not only the perturbations in the stress resultants of
the prestressed state, but also in geometry of the shell,
which is described by the components of the metric and curva-

ture.

After much of the theoretical work of this report was
completed, papers by Koiter [8], Cohen [9], and Budiansky
[10] appeared in the 1iterature, which addressed themselves

exactly at the same problem, i.e., the appropriate equations
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for the stability analysis of an arbitrary shell. While un-
doubtedly all the desired information regarding such equations
could have been obtained from any one of these references, the
point of view which had been adopted for the purposes of this
report is, in our opinion, sufficiently different to warrant
the presentation of our derivation of the stability equations.
The author must hasten to acknowledge, however, the benefit

of having read the three references, which no doubt has helped
him in the preparation of the final version of the derivation

of the stability equations given in this report.

In our derivation, we shall reaquire at the outset that
the coordinate system used to describe the shell in the pre-
stressed state is restricted to be orthoqonal, although not
necessarily directed along the lines of curvature. Such a
requirement makes our equations less general than thcse given
in [8, 10], where they are written in tensor form and there-
fore applicable to arbitrary coordinates. We feel that the
orthogonality restriction will not introduce a serious incon-
venience to the shell analyst, because, whenever possible,
orthogonal coordinate systems should be preferred to non-

orthogonal ones.

The infinitesimal perturbations in the prestressed state
can be regarded as infinitesimal increments in each of the
quantities appearing in the equations of equilibrium, as given
by equations (2.13). An appealing interpretation of the per-

turbation state is given in [10] in terms of the rates »f
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change of all the quantities of the prestressed state with
respect to some monotonically increasing parameter, which
could be imagined as time. Then the stability and free-vibra-
tion problems are concerned with the existence of the rates of
the prestress quantities corresponding to prescribed rates of
the load terms. Of course, the rate concept can be translated
into infinitesimal increments (differentials) by simply multi-
plying the rates by the differential in time. Thus, if a so-
Jution in rates exists, then clearly there also exists a per-
turbed state, at a time dt away from the prestressed state,

given for each quantity by
()= ()P + ()dt (2.57)

where the superscript p denotes the prestressed state, and a
dot designates the rate of change evaluated at the prestressed

state.

Using such a rate concept, let us now turn our attention
to equations (2.13) which represent the exact conditions of
equilibrium of the prestressed state, if the metric and cur-
vasure components are those of the prestressed state. From
here'on, we shall distinguish all quantities belonging to the

prestressed state by the superscript p.

f% order to derive the appropriate equations for the rates
of all quantities, we must simply differentiate all equations

(2.13) with respect to time. In doing so, we should note that
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it follows from equations (2.48) and (2.56) that the rates of
change of the metric and curvature components can be expressed

as

o
AT = ey

p
A
(2.58)
D _ " P
Ry = ep2h;

and

. e
Kyy *+ vy/Ryp - €q4/RYy

D
(1/R%.)

- 1 0w
| (1/R72) = 81 + vo/Ryy = e41/RY,

(2.59)

. A e s 0
(1/Ry1) = 65 + v1/Ryp - €9,/R5y

. s oy o o
koo * Y2/Ryq - €22/R3

(17R,,)

After performing the differentiations of equations (2.13a),
(2.13c), (2.13e), and using (2.59), they can be written in

the form
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. o o
(AN24) o, * MMz T A2 N2

+

PaP(r oP 4 & /oP © PP
ATAZ(Q)/Ryy + Qp/Ryp) + (egahaMyy)

+

© pyp © Py NP
(e12A3N21)  * (egA7) Ny,

* Py NP . aPRPnP(L S
(e55A3) Moz * AJAZQ3 (kyq + vq/RYp + €pp/RYy)

+

PAPaPr: + . soP % - sRP
AJR2Q5(81 + vp/RYy + €55/RY))

+ 2(APAPPPY /0t = 0
17271
(2.63)

+

P C aPaPin P e n. smP
(AYQ;) AT (N3 /RYy + Npo/RY,

(APq,)
20 r - 1

+

oD . N eP © P
N21/R21 * Npp/Rap) + (eg0R303) |

+

© PPy . aPaPrNP (& e R
(e171A703) 5 AYAINT  (kqyy + v /RYp + €2/RYy)

+

g ey e
NI2(8q + vo/RYy + ep5R75)

+

I S
N51(8, + vy/R55 + €qqRy)
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+ Noalkagy ¢+ vp/Ryy ¢ )y /R3,)]

PaPpP .
+ a(AlAZPJ)Iat 0

L 2

P, Py P P PPy
(A2My,) (Ayny,y) , * MMt R - MR

1

*

© PP © PP I
(c22haMn) | ¢ Lenhingy) ;"‘n\“l’ 2

) (] P . ) ) PabPnb
(c2h2) M2z - [y ¢ <22)MyA20

*

PaPyp -
z(A‘AzN‘)/zt 0

Equations (2.13b) and (2.13c) give similar expressions where

only the indices 1 and 2 must be cxchanged.

Our equations of equilibriva were odbtained in one step
from the well-known equations of equilidbriue of a shell ele-
ment., Because we have restricted the coordinate system to
remain orthogonal also in the perturbed state, our equations
contain the assumption that the rate of the membrane shear

strain is zero.

To complete the system of equations, the stress-strain

and strain-displacement equations, (2.14), (2.25), and (2.26),
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must be added, where all stress resultants, shell strains,

and displacement components are regarded as their rates, while
the metric aid curvature components are those of the prestressed
state. Such equations would not, however, be exact, because

the rates of change of the metric and curvature components are
neglected. Therefore, if equations (2.14), (2.25), and (2.26)
were used, then any terms containing the products of the dis-
placement components of the prestressed state and rate vari-
ables of the perturbation would have been neglected. Such an

assumption wiil be made throughout this report.
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5. Simplified Equations for Stability Analysis

Having derived the governing equations for infinitesimal
perturbations of a given prestressed state, let us now turn
our attention to the stability problem of a thin, elastic

shell.

The concept of stability involves a sequence of prestress
load systems which are applied to the shell in a certain pre-
scribed step-wise fashion in such a way that at each subse-
quent step some loads of the prestress load system have in-
creased in magnitude. We shall assume that the initial step
is taken as one where the prestress loads are absent, and
that at this step the shell is in an unstressed state and

stable.

After the loading of each step of the prestress load sys-
tem is completed and the shell has reached a static prestressed
state, we shall perturb the prestressed state by applying some

superimposed load system which produces an infinitesimal per-

turbation. By definition, the shell will be declared unstable,
or we shall say that it buckles, when a prestress load system
is found at which a perturbed state is possible without the
application of any superimposed loads. The first such pre-

stress load system, encountered in the step-wise process of

fncreasing the prestress loads, will be designated the critical

l1oad system, or simply, the buckling load.

e




Mathematically, the buckling load of the shell is reached
when the rate equations, given in the preceding section, to-
gether with the appropriate boundary conditions, are satisfied.
The rates of *he load terms, which occur as the last term in
each of the equilibrium equations (2.63), however, must be

assigned values to correspond to the kinds of prestress loads

-applied to the shell.

Since each surface or edge load is distinguished by its
intensity ‘pe: unit area or length) and direction, there can
be general prescribed relations between the intensity and
direction and the deformation of 're shell. Each such pre-
scribed relation would determine the precise form of the load
rate terms included in equations (2.63). Because of the ap-
proximations planned in this section, all the terms involving
the load rates will be neglected, and therefore the form of
the possible expressions for the load rate terms will not be

pursued any further.

The definition of instability which we have employed means
that when the prestress load system has reached the buckling
load, then both the prestressed and perturbed states are in
equilibrium with the same critical load system. Therefore, at
the same loads, two solutions are possible which indicates a

point of bifurcation in the solution.

It may happen that the shell does not fail at a point of

bifurcation, so that the buckling load does not coincide with
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the collapse load. However, for the purpose of presenting an
analysis for arbitrary shells of revolution, it will be re-
garded that a bifurcation point represents a state of the

shell at which the collapse of the shell may start. No attempt
will be made in this report to pursue the state of the shell

beyond such a bifurcation point.

There is no fundamental difficulty in retaining in the
stability analysis all the terms which appear in equations
(2.63). However, the question may be ~zised, whether or not
all the terms are equally significant and under what condi-
tions can they be simplified. It is the object of this section
to examine arguments on the basis of which some of the terms
may be neglected. The reason for such an objective is the
desire to obtain the simplest possible system of equations for
stability analysis, and at the same time to understand the pre-
cise limitations of such equations. After this examination will
be completed, we shall be able to judge whether or not, for a
given case, our stability equations are valid. If the pre-
stressed or perturbed states do not meet the imposed limita-
tions, we shall also know how to modify the stability equa-
tions by retaining more terms from the exact equations (2.63)

to make them valid.

It {s proposed now to develon: the equations of equilidbrium

for the stability analysis with the following limitations:
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1. As far as equilibrium is concerned, the element of
the shell does not stretch when going from the pre-

stressed to the disturbed state.

2. The bending stresses of the prestressed state are

negligible with respect to the membrane stresses.

{ The first assumption means that we may set in equations

(2.63) €11 = €22 T 0. If this is accepted, then the shell is

assumed to buckle inextensionally, as in the infinitesimal
bending of a ring or a plate. This assumption may be justified
on physical grounds for a case of a smooth shell of revolution,
subjected to an axisymmetric prestress. For such a case, the
superimposed state contains a number o% circumferential waves,
which means that each initially circular strip will change to

a wavy strip when buckling begins. Such a deformation need

not involve any stretching of the strip, so that €11 and €92

i may indeed be close to zero.

It should be emphasized that the first assumption is only
used for the consideration of equilibrium, buvt will not be used
in the stress-strain and strain-displacement relations. There- 5
fore, after the superimposed state for a critical load is found,
ft will be possible to check the relative magnitudes of the mem-
brane and bending strains. Since, as given in [4], the three-

dimensiora)l strain can be written in the form

TR TR R IR (2.64)
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the validity of this assumption may be estimated by comparing
for the superimposed state the membrane strain with the maximum
value of the bending strain. If the first is much smaller than
the second, then the inextensibility assumption will be justi-
fied.

The second assumption means that we can set in equations

(2.63)
P - wP - mP - mP =P o P .
My = M2 = My =My =03 =05 =0

The validity of this assumption can be easily checked by exam-
ining the magnitudes of the stress resultants of the prestressed
state. For the case when the reference surface is the middle

surface of the shell, the membrane stress is given by

028 = N_g/h (2.65a)

and the maximum bending stress by

o:u - 6N_ /N2 (2.65b)

where a, 8 = 1,2 and h denotes the thickness of the shell. If

fn the prestressed state

4
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(2.66)

then the second assumption is justified. If not, it is not
Justified.

If the elastic 1imit of the material is not to be exceeded,
then the loss of stability occurs predominantly in thin shells
for which the inequality (2.66) will be satisfied. This does
not mean, however, that the basic state should be obtained by
means of the membrane theory. If this were done, then not all
boundary conditions of the prestressed state could be satisfied.
For a general approacn, the prestressed state should be obtained
by means of the bending theory of shells. After this is done,
the inequality (2.66) should be examined, and, if it is reason-
ably satisfied, only then the stability equations based on the

second assumption should be employed.

After making use of these two assumptions in equations
(2.63), the equations of equilibrium for the stability analysis

have the following form

B . 2P P
(A2%yy) AL LHL 7 L JPLIPIRR T Y P8

o AfaBtay/nfy ¢ qp/mfy) -0
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NT
L
—h
d
+

p _ aPaP p p
5 (A,OZ)’Z AJRZ (N1 /RY + Nyo/RY,

+

p Py . aPaPrP p
No1/Ray + Npa/Ryp) = AYALINT (Kyy + vy/RY,)

(2.67)

+

p p p p
N72(8y + va/Ryp) + Noy(6, + vq/R3,)

+

p p
N2a(kap + vp/R5)]

p _ap N
21! A PR R LTI B

P p
(‘2"11) ] + (A]M

P ]
(Azn + (A‘M

p Cp o
12) 22) A N R T DI PR
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At this point, the decision must be made whether the sta-
bility analysis should be valid for a prestressed state which
has large deflections and/or rotations, in which case the
shapes of the shell in the unstressed and prestressed states
may differ consideradly. If we wish to adait such cases, then
the prestressed state must be calculated for each prestress

load system using an appropriate nonlinear theory. Then f{t

4
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also becomes necessary to consider the equilibrium equations

in the prestressed state by using the components of the metric
and curvature of the prestressed state, as shown in equations
(2.67). Of course, these components are not given with the
problem, but must be calculated from the metric and curvature
components of the unstressed state and the shell strains of the
prestressed state. The shell strain-displacement relations are
then nonlinear for the prestressed state, and, consequently,
additional stability terms will appear in the shell strain-
displacement relations for the superimposed state. These terms
will contain products of displacement quantities of the pre-

stressed and superimposed states.

While there is no doubt that such a procedure would lead
to a more accurate prediction of the bifurcation points of the
solution, in many cases it may be unnecessary. For example,
the deformation of the prestressed state in an axially loaded
column produces a slightly shorter column at the time of buck-
1i{ng and 1s negligible, as far as the calculation of the crit-
1cal load s concerned. Similarly, the prestressed deforma-
tions in a spherical shell, subjected to an external pressure,
need not be calculated by a nonlinear theory, because the shell
Just prior to buckling is another spherical shell with a slight-
ly shorter radius. As a matter of fact, 1t 1s difficult to
thiak of a buckling prodblem in whicu the prestressed state s
not predoainantly a compressive membrane state involving very

11ttle bDending. The dending occurs at the critical load, when
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going from the prestressed to the disturbed state.

If this argument is correct, then not only are the first
two assumptions justified, but we would be also justified to

assume that:

3. The deflections and rotations of the prestressed

state are infinitesimal.

This will mean that in equations (2.67) and (2.25), we can

set

A? = 2

Ag = a,

RE, = ryy (2.68)
2 = 2

R3Y " T2

R32 * T22

where the terms on the right-hand side refer to the unstressed
state. Moreover, we can also neglect any stadbility terms which
otherwise would occur in the shell strain-displ icement equations,

if a large-deflection prestressed state were admitted.
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Although it imposes a definite limitation on the prestressed

state, such a procedure would save a considerable amount of com-
putation. First, the prestressed state has to be calculated by
means of a linear shell theory only once, because other pre-
stressed states can be obtained by superposition, and second,
the only quantities which must be saved from the prestressed
state are the membrane stress resultants N , NP, ND., and

Ngz. This procedure will be adopted in the stability analysis
described in this report.

As far as the free-vibration problem of a prestressed shell
is concerned, the arguments used to simplify the stability terms
may no longer be as sound as for the stability problem. How-
ever, for the analysis described in this report, it will be

simply assumed that:

1. The vibration of the prestressed shell is predomi-

nantly inextensional.

2. The prestressed state is a membrane state.

| 3. The deformations of the prestressed state are infin-

ftesimal.

I1f such limitations are acceptadle, then the system of
equations used for both the free vidration and stadbility anal-
yses wil) consist of equations (2.67), (2.68), (2.14), and

(2.25). lInertia terms, appearing in equattions (2.13) must bde
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added to equations (2.67) for the free-vidbration prodblem.
Together «ith some homogeneous boundary conditions, these equa-

tions constitute a linear eigenvalue prodlem.
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ITI. FUNDAMENTAL EQUATIONS FOR SHELL ANALYSIS

1. Introduction

The governing equations derived in Section II consist of
a system of twenty-one equations and contain twenty-one unknowns.
The boundary-value problem can be formulated in terms of eight

differential equations, henceforth called the fundamental equa-

tions, involving only eight unknowns, called the fundamental

variables. The other variables are related to the fundamental
variables by algebraic relations. Such a formulation has been
first used for a general shell in [5], and will form the foun-

dation for all the shell analyses described in this report.

According to the method of analysis proposed in [5], one
of the two coordinates on the reference surface of the shell
must be selected as a preferred coordinate, say 1> and then
the fundamental equations will form a system of eight first-
~order partial differential equations with respect to E1s and
the fundamental variables will be those quantities which appear
in the boundary conditions on the edge g1 = constant. Thus,
if £q is selected as the preferred coordinate, the fundamental
variables used in the formulation of the boundary value problem

of a shell are the elements of the following matrix
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where the asterisk designates the effective stress resultants

defined by equations (2.27).

The method of analysis used in [5] requires the solutions
of initial-value problems of the fundamental variables within
the interval of the £ coordinate. For this purpose, it is
necessary to calculate the derivatives of the fundamental vari-
ables with respect to £4 at a given value of £q> when the phys-
ical and geometrical parameters of the shell, the fundamental
variables themselves, and their derivatives with respect to

52 are known at that value of g].

There is a convenient way of arranging the governing equa-

tions for the purpose of such a calculation. It has been given
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for a shell of revolution in [6] and for a general shell in
[5]. It is convenient, because if all equations are calculated
consecutively, the end product is the required derivatives of

the fundamental variables with respect to £1-

The fundamental equations for an arbitrary shell and for a

shell of revolution will now be listed separately.

2. Arbitrary Shell

According to the scheme given in [5], the calculation of
the derivatives of the fundamental variables with respect to
£1 for a classical theory of shells can be arranged in the fol-

lowing order:

g2 = Up p/3 * 35 qUj/ajay + ug/ry, (3.1)
Y2 = Uy,2/32 - 3,qUp/213; * u3/ry, (3.2)
By = Up/rap + uy/ryp - U3,/ (3.3)
kg = Bp,2/2; + 35 187/243, (3.4)
82 = By,2/3 - 3 182/213; (3.5)
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= ag(uy/ryq + up/ryg - 8y)
ay Qup/ajay + uz/ry,
- 3y gUy/ajay * uz/ry,

uy(1/r5,) Y uy(1/ry,) ;T U322

2
Uz 23 1/3;
Ag/ay = 2y oBy/aja; - Ay/Ty,
3+ Kiry,

*
N”-C

12€22 = Eqokap - Hy - 30 + v5) /vy,

K(xg + 85)/ryp
*
Nyg = (F + 377500 (ap + vp) = 4y + 85)

M1y - Eq2e2 - Dygkpp - Hj

(3.

(3.

(3.

(3.

(3.

(3.

(8.

(3.

(3.

6)

7)

8)

9)

10)

11)

12)

13)

14)




d, = F + 2J/r,, + K/r‘%2

d3 = Cyq + K/r§y - Ef4/Dyy - df/dypry
eyp = [N3 - EqM3/Dyy - dyNy/dprypl/dg
kyp = (M3 - Eqqeq9)/Dq,

Uy, p = a3leqy - ay pup/ajap - ug/ryy)
B1,0 7 21Ky - 2 o827 0%)

Up,1 = 21(Ng - dyeqy/ryp)/d,

Yy = Uq/a Ay

+

Up /33T + eq/Tp * 2y

12 = J(Y] * Y2) + K(G] + 52)
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(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)
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1

12

Q'|=

a5

azN

22 °

B =

Crzenn * Copeypp + Eqpkyy + Eppkys 4
= Bypeqy * Eppegp * Dok + Dookyy +
_ *
= Ny - Mya/ry,
_ *
= Nyo - Myp/ra,

*
Q- Myp 2/3,

(a;My5) 5 * Bz.Ma1 = %,2Mn

- aja,(byu, + bgg, - my)

Ha

Hy

* *
1,1 = 3M(1/ry5) R NIRPLAY

N

(ayNyp) - 2y oNyp + 2y 4Ny,

52

a13,(Qy/ryy + py - byuy - byey)
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(3.

(3.

(3.

(3.

(3.

(3.

25)

26)

27)

28)

29)

30)

(3.31)



*
aMiz,1 = 22M2(1/rzg) |- 2Nz T 228 T2

(a;Ny5) , a, 1Npyp + 2y oNyy

273,(Q,/ry, + Py - byuy - by8y) (3.32)

* _ *
3,07 1 = - 25 10y - (ap yMyp/3)) , B2
+ aq3,(Nqq/rqq + Nyp/ryp + Naq/royg
) . )
+ Npp/Tyy = Py * byug) + ayap[Ny (kyy + vy/rqp)

p p
+ B (84 + vp/ryp) + Noq(8, + vq/1p;)

p
+ sz(k22 + 72/r2])] (3.33)
a My = - 3y My - (3gMy) 5 ay M2 * 2y M2

As shown by equations (2.14), it is permissible to assume in

these equations that N]2 = N2] and M]2 = MZ]‘
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If it is desired to eliminate the derivatives of the cur-
vature terms with respect to £q from equation (3.9), this can

be achieved by means of the Codazzi formulas in the form

22(1rgp) = ag{lryy) |+ 2y p(1/rpp + 1/ry,)

+ az’](llr]] - I/rzz) (3.35a)

a,(1/ry,) AL , T 32,11/ * 1/ryy)

+ a],z(]/r]] - l/rzz) (3.35b)

Then the only derivative of the shell properties with respect

to £ appearing in these equations will be that of the metric

component a-

3. Shell Of Revolution

The geometric shell parameters for a shell whose reference
surface in the unstressed state is a surface of revolution

(see Figure 3) is given by
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a; = R¢
= R¢
Er = 8
a, = r

"2

where R¢ is the radius of curvature of the meridian, ¢ is the
angle between the normal and the axis of symmetry, and r is
the distance from the axis of symmetry. The fundamental equa-

tions for a shell of revolution can be written in the follow-

ing form:
€y ™ ue’e/r + u¢cos¢/r + w sing/r (3.36)
Yo = u¢’e/r - ugcosg/r (3.37)
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+

uesin¢/r - w’e/r (3.38)

Be,e/' + 3¢cos¢/r (3.39)
e¢’e/r - secos¢/r (3.40)
= u¢/R¢ - B¢ (3.41)

= ue(]/R¢ - sin¢/r) cos¢/r - ",se/r
W ,cos¢/r2 (3.42)
= N¢ - c'|2€e Lo Elzke - H-I (3.43)

*

N¢e - (F + Jsin¢/r)ye - (J + Ksin¢/r)(x4 + 69) (3.44)
M¢ - Elzee - D]Zke - H3 (3.45)
F + 2dsin¢/r + K(sing¢/r)?2 (3.46)
C]] - E%]/D]] (3.47)
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e, = (Ng - EqqM3/Dqyy)/d;g

ky = (M3 - Eqqe,)/Dqy

Up,s = ¢ ~ WIR,

Bo,s = Ko

Ug,s = Ng/dy

Yo T Ye,s

6¢ = ue'ssin¢/r + x4

Moo = J(Y¢ toyg) t K(6¢ + 6,)
Ng = Craey * Copeg + Eqpk, + E
Mg = Eqaey + Eppeg + Dok, + D

*
N¢e = N¢e - M¢esin¢/r
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B

*
o = Y " Myo,0/"
= Me,e/r + M¢ecos¢/r + bzue + b3ee - my
iy ™ = N¢e,e/r + (Ne - N¢) cos¢/r - Q¢/R¢
. = .
b]u¢ b28¢ p¢
* =M (/R i *
40,5 " ¢e( / 6" sing¢/r) cos¢/r - N¢ecos¢/r
- Bsing/r - Ne,e/r - N*ecos¢/r ¥ b]ue
* b8y - Py
6,5 = - M¢cos¢/r - M¢e,e/r + Mecos¢/r * Q¢
* _ * M 2 B
b,s = " Q¢cos¢/r - ¢e,ecos¢/r - ’e/r
+ N¢/R¢ + Nesin¢/r + blw -p
P p P
+ N¢k¢ + Neke + ZNMT
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where t has been defined as

T=§ + Ye/R¢ = 5 + sin¢/r (3.65)

¢ o e

In these equations, the derivatives with respect to the
arc length, s, along the meridian have been given. The con-
version to a derivative with respect to ¢ is achieved by the

formula

3/3s = (I/R¢) a/3¢ (3.66)

Also, the only relevant Codazzi formula, given by equation

(3.35a), in the form

ar/a¢ = R¢cos¢ (3.67)

has been used throughout the derivation. The normal displace-

ment has been den>ted by w and the normal surface load by p.

The fundamental equations listed in this section define
the behavior of a thin shell for all the boundary value prob-
lems considered in this report. Now we shall consider a method

by means of which all of these problems can be solved.

63




IV. REDUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

1. Statement Of Problem

The method of solution used in the analysis is applicable
to boundary value problems which are governed in a two-dimen-
sional region S, defined by a, < ¢, < b, and a, < ¢, < b,, by

a system of linear differential equations stated in the form
2 2
3y/3ky = F(E1:85,¥1:3Y/38503y/3E5,...) (4.7)

The symbol y = y(el.ez) denotes an (m,1) column matrix whose
elements are m unknown dependent variables, and F denotes m
1inear functions in the elements of y and their derivatives

with respect to Eps arranged as the elements of a column matrix.

In this formulation, €1 is a preferred coordinate.

The method of solution admits general boundary conditions
on the edges of the region S. For the present purpose, it will

be assumed that the boundary conditions are stated in the form

Ta(52)y(a]oﬁz) = U,(EZ) (4.2a)
Tb(CZ).Y(b]oCZ) = ub(EZ) (4.2b)
.V(E]naz) = .Y(E'lnbz) (4.3)
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The elements of the (m,m) matrices, Ta and T, , are specified

by the statement of the boundary conditions on the coordinate
curves &, = a, and £y = b]. respectively, and Up» Uy are (m,1)
column matrices which contain m/2 prescribed elements. As
stated by equations (4.2), the boundary conditions can be spec-
ified on either the elements of y or on their linear combina-

tions, but not on their derivatives. The last condition, equa-

tion (4.3), is a continuity condition of the elements of y on

the coordinate curves £, = 2, and £y = b2. The reason for such
a continuity condition is that for the cases considered in this
report, the €9 coordinate curve is a closed curve, so that the

curves 52 = a, and 52 = bz coincide.

Before presenting the actual procedure of the method of
analysis, the system of partial differential equations must be
turned into a system of ordinary differential equations, depend-
ing only on the coordinate £y~ Two different possibilities are

discussed below.

2. Separable Equations

For axisymmetric shells, which have a straight axis of sym-
metry for its geometric and physical properties, the homogeneous
system of equations obtained from equation (4.1) is separable

with respect to the £ and £y coordinates. Choosing £y S the

circumferential coordinate along a closed latitude circle of
the shell, the elements of y can be expressed in a separable

form as follows
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Y(E]»Ez) x yn(ﬁ])Tn(Ez) (4-43)
where
cos ng,
Tn(EZ) = (4.4b)
sin ng,

with the meaning that, depending on the particular element of
y, the top or the bottom trigonometric function in equation

(4.45) 1s applicable. If the nonhomogeneous load terms, con-
tained in equation (4.1), are chosen in a similarly separable

form, i.e.,

b(E]ozz) ® bn(E])Tn(Ez) (4.5)

then the e]-dependent part of y is governed by a system of m

linear ordinary differential equations which can be written as

dyn(E])/dE, = F(E]:yn) + bn(E]) (4.6)

where F denotes m linear functions in the elements of yn(g]),
and the (m,1) column matrix, bn, contains the zl-dependent

parts of the load terms. Similarly, the prescribed boundary
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conditions are chosen in a separable form as

ulep) = u, T (k5)
(4.7)

ub(Ez) = ubnTn(EZ)

The condition given by equation (4.3) is automatically satis-
fied, because the cz-coordinate curve is a closed curve and

the trigonometric functions, Tn(ez). are periodic.

The case when the homogeneous equations are separable is
the simplest one, and, for each value of n, it leads to the
solution of boundary value problems governed by a system of
m first-order, ordinary differential equations, as given by
equation (4.6). If the loads and the boundary conditions are

expanded in a Fourier series of the form

Fleyae,) = n;fo £ (6T, (g,) (4.8)

then the problem is solved for each set of Fourier coefficients,

fn(g]), separately, and the solution is constructed in a simi-

lar series, given by
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y(Ea6y) = 1y (g))T,(5y) (4.9)
n=o0

The Fourier coefficients, fn(;]), can be either bn(g]), Uap:

or u,., and they produce the solution yn(c]).

With regard to the boundary value problem of a thin, elastic
shell of revolution, the governing equations are separable for
the linear stress analysis problem of a shell, subjected to
arbitrary loads, and for the free-vibration and stability prob-
lems with axisymmetric prestress. For the first case, the sur-

+ace loads on the shell must be expanded in a Fourier series of

the form

N
p(e,0) = T [p,(¢) cos ne + pr(4) sin ne]
n=0

N
) [p;n(¢) cos no + p;n(¢) sin ne] (4.10)

p,(¢,0) =
¢ n=o

N
Pole,0) = nzo [pga(¢) sin ne + Penle) cos nel

where N is selected in such a way that the series gives an ac-
ceptable representation of the actual loads. The solution for

the fundamental variables is then given in the form
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N
w(¢,8) = ] [w (e) cos ne +

n=o0

. N
O¢(¢.e) = ] [°¢n(°) cos

N
u,(e,0) = ngo Lugn(e) cos
I N (¢,0) ) [N _(¢)
| » = : S
f 0142 nzo ¢n' ¢! €O
|
} o N '
B¢(¢.0) = nZo [B¢n(°) cos
M¢(¢.e) = néo ["on(°) cos

N
uglese) = ) [ug,(e) sin

ne

ne

ne

ne

ne

ne
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w;(¢) sin ne]

+ Q;n(¢) sin ne]

+ u;n(¢) sin ne]

+ N;n(¢) sin ne]

(4.11)

+ B;n(¢) sin ne]

+ M;n(¢) sin ne)

n
+ uen(¢) cos noJj

- N
N¢e(¢,e) = nZo [N;e"(o) sin ne + N;en(¢) cos neJ

The boundary value problem for the shell of revolution is

solved for each value of n separately, and each prescribed

PP —
.
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primed or double-primed component of the load produces the
primed or double-primed components of the solution. The gov-
erning equations are the eight first-order, ordinary differen-
tial equations, obtained from the fundamental equations of
Section Iil, after making use of the solution in the separable
form of equations (4.11) and setting the prestress terms equal

to zero.

For the free-vibration and stability problems with axisym-
metric prestress, the surface and edge loads are zero, but the
solution is again given in the form of equations (4.11). Thus,
the governing equations are given by the same system of eight
first-order, differential equations of Section III, except that
now the prestress terms, appearing in equation (3.64), must be

retained and the surface loads set equal to zero. For the sta-

bility problem, the inertia terms are set equal to zero, and
by varying the prestress terms, the buckling loads are found
for each given value of n. For a free-vibration problem, the
prestress terms are kept constant, and by varying the frequency,

the natural frequencies are found for each given value of n.

3. Nonseparable Equations

For shells of revolution, which have some nonsymmetric
shell parameters, such as thickness, prestress, material prop-
erties, imperfections, etc., the system of equations(4.1) is
not separable. These parameters appear as two-dimensional co-
efficients in the differential equations, and a separable solu-
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tion in the form of equations (4.4) is no longer possible. 1In
order to reduce eauation (4.1) to a system of first-order, or-
dinary differential equations, some procedure must be used for
the elimination of the derivatives with respect to Eo ON the
right hand side of equation (4.1). This can be achieved in
various ways. A Fourier expansion method will be used in this

report.

Since it is assumed that the £9 coordinate curve is a closed
circle, the nonsymmetric shell parameters must be periodic, and

they can be expanded in Fourier series in the form
N
P(E],gz) . mZo Pm(gl)Tm(gz) (4-]2)

The ¢,-dependent coefficients, Pm(g]), are given, and the cor-
responding coefficients of the solution, yn(g1), must be found.
Unlike the case when all the parameters are axisymmetric, it is
no longer true that one Fourier coefficient in the load param-
eters will produce one Fourier coefficient in the solution,
yn(g]), with the same value of n. Instead, an infinite series
for an exact solution is in general needed for any choice of
the load parameters. Therefore, to solve the problem exactly,
an infinite number of differential equations containing the in-
finite number of unknowns, yn(g]), would have to be solved.
Since that is impossible, one way to solve such a problem is

to satisfy equation (4.1) by assuming an approximate solution
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of the form

y(gq,8,) = n=n],§..,nk v (e)T,(£5) (4.13)

The indices, ns» where i = 1,2,...,k, represent a selected list
of .ave numbers, and in general they need be neither consecutive
nor start with n = 0. They must be selected by the user of the

method from previous experience.

Substitution of such an approximate sclution, given by equa-

tion (4.13), into equation (4.1), leads to

G] + 62 =0 (4.14)
where
G] = z Rn(gl)Tn(gz) (4.15a)

n=n],...,nk

R (&) = dy, (g,)/dgy - F[E].yn](i]),...,ynk(gl)] (4.15b)
and
Gy = nfn],g..,nk Sn[E].yn](C]),...,ynk(g])]Tn(gz) (4.15c)
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The group of terms denoted by G] contain the trigonometric
functions, Tn(gz), with those values of n which are on the list
of the selected wave numbers, while G2 contains those which are

not on the list.

If the solution given by equation (4.13) were exact, it
would satisfy equation (4.14) exactly. Since this must be so
for any value of £ it follows that for an exact solution we

must require that

Rn =0 for N=ny,...,n, (4.16a)

S, = 0 for nfny,....ny (4.16b)

Noting that the unknowns in equation (4.14) are the £y-depen-
dent coefficients of the solution, which are k in number, it
is concluded that equations (4.16) require the satisfaction of
more equations than the number of unknowns. In general, this
is not possible, and the solution as given by equation (4.13)

can satisfy equation (4.1) only approximately.

The method for arriving at a reasonable approximation can
be borrowed from the method of weighted residuals [7], which
requires that instead of the actual equa’t.on (4.1), its inte-
gral with respect to s multiplied by a suitable weighting
function, be satisfied; i.e., that
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b
{: (6, + G,1W;(g,)de, = 0 (4.17)

]
¥
!

where "1(52) are the weighting functions.

The easiest choice of the weighting functions for our case
1s to use the same trigonometric functions, Tn(gz), which are
selected to participate in the solution as given by equation
(4.13); i.e., the trigonometric functions with indices n = nys

Noseoashy. Because the integrals of products of trigonometric

functions with unequal indices are zero, such a selection of
“1(52) means that the integral of equation (4.17) containing
G, is zero, and that then equations (4.15) reduce to

b
2
R ( T T de, = 0 (4.18)
{2 [n=n1.¥...nk n(69)7,(e5)1T, (€,)de,

where { = LD T Equation (4.18) represents k equations

containing k unknowns, yn(c]), and it can be solved.

When the integration with respect to P in equation (4.18)
is carried out, only the terms with n = i remain, and, after
omitting factors which arise from the integration, equation

(4.18) reduces to

Rn(c]) =0 (4.19)
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where n = Myseeesnp. Thus, the method of weighted residuals
has shown that the solution can be represented by equation
(4.13), when the 5]-dependent coefficients, yn(g]), are found
from equation (4.19). The error in the solution comes from the

fact that equation (4.16b) is not satisfied.

This discussion has given a general approach for the anal-
ysis of shells of revolution with some nonsymmetric parameters.
For the shell analysis considered in this report, the nonsepa-
rable case arises for the free vibration and stability problems
with a nonsymmetric prestress. Then the prestress terms, N:.

Nge, and Ng. occurring in equation (3.64), are dependent on ¢

and the solution is not separable.

Regarding the stability of a shell of revolution, it is im-
portant to investigate the character of the instability that
nonsymmetric prestresc loads can produce. If the prestress loads
are assumed exparded in a Fourier series in the form given by
equation (4.12), let us consider the character of the instabil-

ity produced by the separate terms of the series. A special

case arises for the Fourier harmeonic with m = 1. 1In this case,
there is a resultant couple produced by the stress resultants
on a latitude circle of the shell, and therefore this problem
can be called the "bending" problem of a shell of revolution.
The stability analyses for the bending of cylindrical and con-

ical shells have been successfully carried out in the past.
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The stability problem of a shell of revolution subjected
to prestress loads which are represented by a Fourier harmonic
with m>2 seems to be in a different category. Not a single
pubiished theoretical or experimental investigation is known
to the author which deals with such prestress loads. Moreover,
as the following arguments will show, the prestressed state
with m>2 leads to a state of the sheil which is quite different
from that with m =0 or m = 1, as far as the buckling of a shell

is concerned.

Consider, for example, a shell of revolution with some pre-
stress loads given by one Fourier harmonic with m>2. Then the
membrane stress resultants of the prestressed state obtained by

a linear theory will have the form

P . NP
N¢ Nom(¢) cosme (4.20)

With such a circumferential variation, positive and negative
signs Jf the stress field will alternate along meridional strips
(Figure 5), having the width of the circumference divided by
2m. Thus, any buckling that could occur would be confined to
those strips which are in compression, while the ones in tension
would be stretched. Moreover, for m>2, the resultant force and
couple of all the stress resultants on a latitude circle of a
shell of revolution are zero, so that no force or couple is

directly transmitted along the meridian in the way that it is
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transmitted for prestress loads withm =0 or m = 1.

To illustrate the "transmission" of the resultant force
and couple along the meridian, consider a cylindrical shell sub-
jected to an edge load in the form of equation (4.20). For the
wave numbers m = 0 or m = 1, the Fourier coefficient of the mem-
brane stress, N:m, does not decay when going along the generator
away from the edge, but stays approximately constant. The re-
sultant force and couple on every latitude circle remains con-
stant, regardless of the length of the shell. For m>2, however,
since the resultant force and couple of the applied edge load
are zero, it follows from St. Venant's principle that N:m mus t
decay when going away from the loaded edge, and that the char-
acteristic decay length equals the diameter of the latitude
circle. Therefore, for m>2, the effect of the applied load is

felt only near the edge and does not affect the whole shell.

The preceding arguments are being advanced for the purpose
of justifying the admission of only one Fourier component of the
prestressed state at one time. Our hypothesis is that even
though a nonsymmetric prestress load may have to be expanded in
a Fourier series with many terms, the components which will
affect the stability of the whole will be those with wave num-
bers m = 0 and m = 1. Therefore, we see no point in complicat-
ing the analysis at this time by the inclusion of more nonsym-
metric Fourier components but one. We are, however, going to

admit arbitrary values of m, so that the character of the in-
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stability produced by prestress loads with m>2 can also be ex-

plored.

If the prestress loads are represented by one Fourier com-
ponent with any m, then the membrane stress resultants of the

prestressed state, oc-urring in equations (3.64), are given by
P = NP
N¢(¢,e) N¢m(¢) cosme
p - NP
Ne(¢,e) Nem(¢) cosme (4.20)

p - NP
N¢e(¢,e) N¢em(¢) sinme

The superimposed state can then have either the same plane
of symmetry, in which case the superimposed variables in the

stability terms of equations (3.64) are given by

k¢(¢.8) = g k¢n(¢) cosne
ko(e,0) = ] ko (¢) cosne (4.21)

n

1(¢,6) = Z rn(¢) sinne
n
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or anti-symmetry, in which case they will be given by

k¢(¢,e) = % k¢n(¢) sinne

ke(¢,e) ] k,.(¢) sinne
n V.

t(¢,8) = ] 1,(¢) cosne
n

(4.22)

The series in equations (4.21) and (4.22) are to be summed over

the same list of wave numbers that is used in equation (4.13).

For the symmetric superimposed state, the stability terms

of equations (3.64) will have the form

. p p
Fq g [(N¢mk¢n + Ngko,) cosme cosne

+ 2NP

40m™n sinme sinno]

Using the identities

2 cosme cosnd cos(n-m)s. + cos(n+m)e

2 sinme sinne cos(n-m)e - cos(n+m)e
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equation (4.23) can be written as

2F3 = g [fncos(n-m)e + gncos(n+m)e] (4.25)

where

f = NPk + NP k. + 2NP

n ¢m én em en ¢em'n
(4.26)
- P - NP
In N¢mk¢n * NomKon 2N¢ean

For an antisymmetric superimposed state, the stability terms

have the form

~ P p
Fq g [(N¢mk¢n + NB k.. ) cosme sinne

+ 2nNP

som™n sinme cosne] (4.27)

and with the use of
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2 cosme sinne

sin(n+m) + sin(n-m)

(4.28)
2 sinme cosne = sin(n+m) - sin(n-m)
we get that
2F5 = g [fnsin(n-m)e + g sin(n+m)e] (4.29)
where
- nP P . onNP
fa N¢mk¢n * NomKon 2Nqsean
(4.30)
= NP P p
9 N¢mk¢n * NomKkgn * 2N¢ean
Let us now rewrite equation (4.25) in the form
2F, = n'g foiepcosn'e + J 9,1 _pcoSn'e (4.31)

n-m n'‘=n+m
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As stated by equation (4.19), the procedure calls for the re-
tention of only those Fourier components of the series of equa-
tion (4.31) which are on the list of Pyseeesps and the neglect
of any other terms. With this approximation, equation (4.31)

can be written as

2F, = g (foem * 9p-p) cOSNO (4.32)

where n = Nyseeeshy.

Since in the solution those terms which are not on the list
of the selected wave numbers are zero, then it follows from
equation (4.32) that only those wave numbers on the list which
are multiples of m will contribute to the stability terms.

This makes sense in view of our preceding argument that buckling
can only occur in isolated strips having the width of the cir-
cumference divided by 2m. If the superimposed state is to be
limited to such strips, it should consist of a 1ist of selected
wave numbers which could include m and contain only higher mul-

tiples of m.

We now have arrived at some procedure for the selection of
the 1ist of wave numbers which can be used in the solution.
Unless our future experience will prove otherwise, for the sta-
bility analysis with nonsymmetric prestress covered in this re-

port, we shall select the list as follows
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n=Jjm (4.33)

where j = i],...,ik and represents consecutive integers, not
necessarily starting with i] = 1, and k denotes the number of
components used in the solution. Then the stability terms which

must be used in equations (3.64) can finally be written as

cosjme ( )
F, = h. 4.34
3 g Jm sinjme

where j i],...,ik, and

=
]

- NP
im = Nom DKo (enm * Ko(5-1)md/2

+ NEn [k (genym * Ko (j-1)md’/2

H

Noom L*(341)m = *(3-1)n 14.35)

The upper trigonometric function in equation (4.34) and the
upper algebraic sign in equation (4.35) refer to the symmetric
superimposed state, while the lower function and sign refer to

the antisymmetric state.
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It should be clear from this analysis, that the selected
Fourier compcnents of the superimposed state are coupled, be-
cause the indices are shifted up and down in equation (4.35).
Therefore, the system of first-order, ordinary differential
equations, defined by equation (4.15b), consists of 8k equations

and 8k unknowns.

The actual calculation of the derivatives of the 8k unknowns
can be carried out as follows. First, using the fundamental
equations of Section III with the prestress terms omitted, the
derivatives of each of the fundamental variables, denoted by
yjm(¢). are calculated, in succession for j = i],...,ik, and
the results are stored in a two-dimensional array. During this
» and A, are also found

¢jm? kejm Jjm
and stored in three one-dimensional arrays. Then, the deriv-

calculation the values of k

ative of Q: is augmented by the stability terms hjm’ given for
each value of j by equation (4.35). This procedure will give

the proper derivatives for all the 8k unknowns.

The case of the nonseparable solutions also arises in the
free-vibration problem with a nonsymmetric prestress. The anal-
ysis is identical to that of the stability analysis, except that
the inertia terms appearing in the fundamental equations must

be included.
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V. SOLUTION OF BOUNDARY VALUE PROBLEMS

1. Reduction To Initial Value Problems

As shown in the preceding section, the system of partial
differential equations of shell theory can be reduced in various
ways to a system of first-order, ordinary differential equations

which can be written in the form

dy(x)/dx = F(x,y) + b(x) (5.1)

where y(x) is an (m,1) column matrix which contains m unknown
dependent variables; F denotes m linear functionsof the elements
of y, arranged in a column matrix form; b(x) is an (m,1) column
matrix which contains the nonhomogeneous load terms; and x is
the independent variable. The solution of the boundary value
problem is governed by equation (5.1) in the interval a<x<b,

and at the ends of the interval it must satisfy the following

boundary conditions

Tay(a) -y,

(5.2)

Tb.Y(b) S ub




The elements of the (m,m) matrices, T_ and Tb’ are specified by 1

the boundary conditions, and m/2 elements of each of u_ and up

a
are the prescribed quantities on the boundaries. Equations
(5.1) and (5.2) represent a two-point boundary value problem,

for which the solution will be found.

Since equation (5.1) consists of a system of linear, ordi-

nary differential equations, its solution can be written as ’

y(x) = W(x)c + d(x) (5.3)

where W(x) is an (m,m) matrix whose columns are m independent
solutions of the homogeneous equations obtained from equation
(5.1); c is an (m,1) column matrix whose elements are arbitrary
constants; and d(x) is an (m,1) column matrix which represents

a particular solution of equation (5.1).

Evaluation of equation (5.3) at x = a and the solution for

¢ leads to

c = W '(a)y(a) - w'(a)d(a) (5.4)

Substituting ¢ into equation (5.3), gives

y(x) = Y(x)y(a) + z(x) (5.5)
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where
Y(x) = W(x)W 1 (a)
(5.6)
z(x) = d(x) - H(x)W V(a)d(a)

It should be noted that if the columns of W(x) are homo-
geneous solutions of equation (5.1), then the columns of Y(x)
are linear combinations of W(x) and therefore also homogeneous
solutions of equation (5.1). Similarly, z(x) is a particular
solution of equation (5.1). Thus, the columns of Y(x), denoted

by Yn(x), satisfy

dYn(x)/dx = F(x,Yn) (5.7a)

where n = 1,2,...,m, and

dz(x)/dx = F(x,z) + b(x) (5.7b)

The initial values for Yn(x) and z(x) at x = a are obtained from

equations (5.6) as
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Y(a) = 1
(5.8)

z(a) = 0

where I is an (m,m) unit matrix.

The solution of equation (5.1) in the whole interval a<x<b
is formally given by equation (5.5), where Y(x) and z(x) are
obtained from the m+1 solutions of the initial value problems
defined by equations (5.7) and (5.8). In order to make such a
solution also satisfy the prescribed boundary conditions, as

given by equations (5.2), the following procedure is used.
Evaluation of equation (5.5) at x = b leads to

y(b) = Y(b)y(a) + z(b) , (5.9)

Premultiplication of equation (5.9) by T, and the use of equa-
tions (5.2) to eliminate y(a) and y(b), gives

up = U(b)ua + g(b) | (5.10)

where
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U(b) = Tbv(b)T;‘

g(b) = T,z(b)

By definition, the column matrices u_ and up each contain

a
m/2 known elements, which are the prescribed variables at each

end of the interval. It is convenient to arrange the rows of

the given boundary condition matrices, T_ and Tb’ in such a way

a
that the prescribed elements of u, appear as the first m/2 ele-

ments and the prescribed elements of u, are the last m/2 ele-

ments. Such an arrangement permits the partitioning of equation

(5.10) in the form

T [ T ]

Up Uy (b) : Up(b)} | uyy 9, (b)
[{
|}

—] |—==] + |——=— (5.11)

Up2 Us(b) | Ug(b) | uy, g,(b)

At E R | N

which can be written as

e =rre I )

Upq = U](b)ua] + Uz(b)ua2 + g](b) (5.12a)

U3(b)ua] + U4(b)uaz + gz(b) (5.12b)
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! | Since Upo and u,q are known, equation (5.12b) can be used to

' find Uy in the form

Uy = LU0 1 T Lup, - Us()u,y - g,(b)] (5.13)

Having found the unprescribed variables at x = a, the elements

of y which appear in equation (5.1) are given at x = a by

1 Yal

y(a) = T |-—— (5.14)

Ya2

Now the solution y(x) can be obtained at any desired output
point within the interval a<x<b by one more initial value in-

tegration of equation (5.1), with the initial values given by

equation (5.14). Such an integration must give at x b a
solution which satisfies the boundary conditions at x = b
exactly. The boundary value problem defined by equations (5.1)

and (5.2) can then be regarded as formally solved.

A similar procedure can be employed for the solution of
eigenvalue problems, for which in equation (5.1) the functions
F depend also on a parameter, say w, and for which b(x) = 0

and the boundary conditions are homogeneous, i.e., Ugp = Upo 0.

Then, the solution matrices Y and U depend on w, and equation

(5.12b) can be written as
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U4(w,b)ua2 =0 (5.15)

A nontrivial solution for Uso is possible if the (m/2,m/2)
matrix U4(w,b) is such that

det[U4(w,b)] =0 (5.16)

Equation (5.16) is then the characteristic equation of the eigen-
value problem, and the particular value of w which satisfies
equation (5.16) is an eigenvalue. Once an eigenvalue is found,

the corresponding eigenvector, Uaps is obtained from

u;2 . d(-l)i”det[Mi] (5.17)

where “;2 denotes the i-th element of Usoo d is an arbitrary
constant, and M1 is an (m/2-1,m/2-1) matrix obtained from
U4(w,b) after deleting any one row and then, in succession, the

i-th column.

Once the unprescribed elements of u,p are determined from
equation (5.17), the solution, corresponding to the eigenvalue
which satisfies equation (5.16), can again be obtained by first
using equation (5.14) and then performing one initial value in-

tegration from x = a to x = b.
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While this method of solution is sound in principle, it
is not so in practice. If any required number of significant
digits were kept in all initial value integrations, matrix in-
versions and multiplications, then the method would give a cor-
rect solution for any size of the interval a<x<b. However, if
only a fixed number of significant digits, such as seven or
eight, is used in the calculation, the solution loses all ac-

curacy beyond a certain critical length of the interval.

The inevitable loss of accuracy inherent in this method is
not caused by errors introduced through the numerical integra-
tion of the initial value problems, but it results from the
subtraction of numbers whose significant digits are identical.
For example, if seven digits are used for each number, and if
at any point during the calculation two numbers with four iden-
tical significant digits are subtracted, then the accuracy of
subsequent calculations involving these numbers is at most three

significant digits.

In particular, such accuracy loss occurs in equation (5.9).
It can be 1l1lustrated by the following example. When the method
is applied to a cylindrical shell, the homogeneous solutions
which make up the columns of Y are known to be linear combina-

aX_ As x is increased, the columns of Y in-

ax

tions of e?* and e~
crease in magnitude as e Consider, for example, the axisym-
metric case when the deformation of the shell is caused by some
prescribed edge condition at x = a, say by Mx(a) = 1 and Nx(a)

= Q(a) = 0. As the distance from the loaded end is increased,
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the solution, according tn St. Venant's principle, is supposed

to decay. The terms of equation (5.9), then, have the following
magnitude as x is increased: (1) y(a) stays about the same;

(2) Y(b) increases as e*; (3) y(b) decreases. It is obvious
that for a sufficiently long shell all the significant digits

of the matrix product Y(b)y(a) will have to be subtracted out

to obtain smaller and smaller elements of y(b). This accuracy
loss is not 1imited to self-equilibrated load systems, but occurs
also even in the cases when the solution does not decay, simply
because initial value solutions of the differential equations of

a shell of revolution grow exponentially.
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